加入收藏 | 设为首页 | 会员中心 | 我要投稿 淮安站长网 (https://www.0517zz.com.cn/)- 数据开发、人脸识别、智能机器人、图像处理、语音技术!
当前位置: 首页 > 站长资讯 > 传媒 > 正文

智能将“吞噬”数据

发布时间:2021-02-23 14:53:28 所属栏目:传媒 来源:互联网
导读:能还可以解决更为模糊的问题,这些问题的答案通常更加不确定或者是模棱两可的。这通常是判断或者识别类的问题,可以扩展到创作或者其他的右脑活动。这又导致对数据的更多需求,在某些情况下,从本质上而言,这些需求可能是迫切或者实时的。 从数据驱动到结果

能还可以解决更为模糊的问题,这些问题的答案通常更加不确定或者是模棱两可的。这通常是判断或者识别类的问题,可以扩展到创作或者其他的右脑活动。这又导致对数据的更多需求,在某些情况下,从本质上而言,这些需求可能是迫切或者实时的。

从数据驱动到结果驱动的转变

人工智能在协助或解决的复杂问题中不断发展,随着这一趋势,它将成为数据驱动和目标/结果驱动。这意味着人工智能可能会在解决特定问题或者进行特定推断过程中即时请求数据,从而使数据管理变得更加复杂。它可能涉及解决方案的归纳数据驱动部分与为了达到目标假设的数据演绎需求的交互。以结果为导向的问题需要这种类型的动态交互。这与仅仅检索数据以寻找感兴趣的事件或模式的做法有很大的不同。决策驱动的方式则正好落在这两种截然不同的模式之间。通过将数据和结果进行匹配,可以聚焦一些决策的运行状况并加以改进。无论是归纳还是演绎都会出现更多的战略决策。这只是推动数据使用量需求的源动力之一。

不断变化的问题范围影响数据需求

人工智能解决方案的范围通常会从狭窄的领域开始,并随着时间的流逝而扩大到更大的范围,因此也就会需要更多数据。复杂的解决方案通常瞄准了多个答案,并且需要更多的数据来支持支路解决方案集,从而产生复杂/混合的结果。随着决策、行动和结果的范围跨越组织内部和外部的更多场景,将需要获取更多的数据以了解每种场景及其相互作用。这些场景中的每一个都可能以不同的速率变化和变形,因此,也就会需要更多的数据。

总结


 

(编辑:淮安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读