5个大数据处理/数据分析/分布式工具
1.Hadoop Hadoop是一个开源框架,它允许在整个集群使用简单编程模型计算机的分布式环境存储并处理大数据。它的目的是从单一的服务器到上千台机器的扩展,每一个台机都可以提供本地计算和存储。 2.Druid Druid是实时数据分析存储系统,Java语言中最好的数据库连接池。Druid能够提供强大的监控和扩展功能。 Druid是一个分布式的、面向列的、实时的分析数据存储库,通常用于为多租户环境中的探索性仪表板供电。 Druid作为一种数据仓库解决方案,擅长于对petabyte大小的数据集进行快速聚合查询。Druid支持各种灵活的过滤器、精确计算、近似算法和其他有用的计算。 Druid可以同时加载流数据和批处理数据,并与Samza、Kafka、Storm、SPark和Hadoop集成。 3.Ambari 大数据平台搭建、监控利器;类似的还有CDH Ambari能够: 提供Hadoop集群
管理Hadoop集群
监视Hadoop集群
4.Spark 一个快速通用的集群计算系统.它在Java、Scala、Python和R中提供了高级API,并提供了支持通用执行图的优化引擎。大规模数据处理框架(可以应付企业中常见的三种数据处理场景:复杂的批量数据处理(batch data processing);基于历史数据的交互式查询;基于实时数据流的数据处理,Ceph:Linux分布式文件系统。 5.Storm Storm是一个免费开源、分布式、高容错的实时计算系统。Storm令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求。Storm经常用于在实时分析、在线机器学习、持续计算、分布式远程调用和ETL等领域。Storm的部署管理非常简单,而且,在同类的流式计算工具,Storm的性能也是非常出众的。 【编辑推荐】
点赞 0 (编辑:淮安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |