-
怎样改善数据供应链的成果
所属栏目:[大数据] 日期:2022-08-27 热度:51
如今,企业拥有比以往任何时候都要多的数据,数据架构师、分析师和数据科学家在所有业务职能部门中变得越来越普遍。然而,随着企业招募经验丰富的分析师以利用数据做出更好的决策,他们往往无法改善数据供应链和由此产生的数据质量。如果没有可靠的数据供应[详细]
-
终于有人把Hadoop大数据系统架构讲清楚了
所属栏目:[大数据] 日期:2022-08-24 热度:159
传统的系统已无法处理结构多变的大数据,而高性能硬件和专用服务器价格昂贵且不灵活,Hadoop因此应运而生。Hadoop使用互连的廉价商业硬件,通过数百甚至数千个低成本服务器协同工作,可有效存储和处理大量数据。 1.Hadoop生态体系 Google通过三篇重量级论文[详细]
-
交通领域的物联网如何使大数据之于企业产生价值
所属栏目:[大数据] 日期:2022-08-24 热度:52
全球物流市场不断增长,科技正成为发展的主要触发器。 企业正在寻找用于运输的物联网解决方案,以帮助他们提高供应链的可见性、改善物流各个阶段的运营并节省资源。 这可以通过使用物联网设备收集有关物流过程的数据并将其转换为有价值的业务信息来实现。 让[详细]
-
怎样用好数据科学
所属栏目:[大数据] 日期:2022-08-24 热度:105
很长一段时间以来,数据科学一直被视为科技和商业领域的下一次重大革命。最近几年增加了不少使用数据科学应用的企业。根据Statista的数据,截至2021年,近60%的公司在其团队中拥有至少50名数据科学家。 然而,如果客观地看待,数据科学提供的结果与它的期望[详细]
-
浅析大数据的数据灾备建设
所属栏目:[大数据] 日期:2022-08-24 热度:56
大数据时代,数据呈爆炸趋势增长,很多企业都从大数据中获得了利益,推动各自的业务上升了一个台阶。通过大数据技术的完善尤其是大数据和云容器技术相结合,各个企业已经把自己的重要业务迁移到了大数据平台。与此同时企业对数据可靠性和业务连续性保证的诉[详细]
-
未来已来 Cloudera拥抱混合数据年代
所属栏目:[大数据] 日期:2022-08-24 热度:99
我们生活在一个混合数据的世界中。在过去十年间,世界创建、捕获、复制和使用的结构化数据量已从2011年的不到 1ZB 增长到 2020 年的近 14ZB,这已经很惊人了,但还有另外更巨大的 50ZB数据非结构化数据、云数据和机器数据。 对于Cloudera来说,这是一个回到[详细]
-
如何策划数据可视化平台
所属栏目:[大数据] 日期:2022-08-24 热度:164
最近在项目上常常听到这样的话:我想要一个酷炫的数据大屏,设计一定要有科技感,这个可视化设计没有重点每当听到这些需求,作为设计师一般都是欲哭无泪的。到底什么叫酷炫有科技感?客户理解的数据大屏什么样?是数据还是可视化出了问题?? 这篇文章将会结[详细]
-
Python实行数据可视化 你会用什么库来做呢
所属栏目:[大数据] 日期:2022-08-24 热度:191
用Python进行数据可视化你会用什么库来做呢? 今天就来和大家分享Python数据可视化库中的一员猛将Altair! 借助Altair,我们可以将更多的精力和时间放在理解数据本身及数据意义上,从复杂的数据可视化过程中解脱出来。 简单来说,Altair是一种可视化语法,也[详细]
-
一文看清楚 数据指标体系的几大类别
所属栏目:[大数据] 日期:2022-08-24 热度:200
很多同学问:有没有普遍的、一般的指标体系梳理方法?网上常见的指标体系分享,大多是互联网的AARRR一类,现实中情况却很复杂。普遍的方法当然有,就是基于业务逻辑,梳理指标体系。从本质上看,数据指标体系有4大类型,针对四个不同的业务逻辑。今天来系统[详细]
-
两种主流大数据系统架构的差异 终于有人讲明白了
所属栏目:[大数据] 日期:2022-08-24 热度:84
同样都可以处理大规模数据的MPP数据库架构与Hadoop体系架构属于不同的技术体系,二者没有直接的相关性,却常常被放在一起进行比较。特别是在企业数据仓库建设中,MPP架构与Hadoop架构代表两类典型的技术路线选型,事实上,在2015年左右甚至有人认为基于Hadoo[详细]
-
从0到1创建智能灰度数据体系 以vivo游戏中心为例
所属栏目:[大数据] 日期:2022-08-24 热度:164
本文介绍了vivo游戏中心在灰度数据分析体系上的实践经验,从实验思想-数学方法-数据模型-产品方案四个层面提供了一套较为完整的智能灰度数据解决方案,以保障版本评估的科学性、项目进度以及灰度验证环节的快速闭环。该方案的亮点在于,指标异动根因分析方法[详细]
-
用 Spark SQL 实行结构化数据处理
所属栏目:[大数据] 日期:2022-07-04 热度:92
Spark SQL 是 Spark 生态系统中处理结构化格式数据的模块。它在内部使用 Spark Core API 进行处理,但对用户的使用进行了抽象。这篇文章深入浅出地告诉你 Spark SQL 3.x 的新内容。 有了 Spark SQL,用户可以编写 SQL 风格的查询。这对于精通结构化查询语言[详细]
-
数据驱动业务的18个有效战略
所属栏目:[大数据] 日期:2022-07-04 热度:72
你老想着数据驱动业务,但发现有力无处使,或者没人鸟你,我也有同样的经历,下面有18条策略锦囊,望你笑纳。 第一条 数据驱动业务中的数据广义来讲不仅仅是指存储在大数据平台的那堆数据(反映客观事实),也包括战略、组织、机制、流程、人性、认知、客户的[详细]
-
实施合理的数据收集策略的关键性
所属栏目:[大数据] 日期:2022-07-04 热度:144
数据已经成为企业最宝贵的资产之一,而一些企业仍然否认它的重要性,但他们对接受它的犹豫正在消退。一项民意调查发现,36%的企业认为大数据对他们的成功至关重要。 然而,许多企业仍在努力制定持久的数据战略。最主要的一个问题是他们没有可靠的数据收集方[详细]
-
大数据能为建筑能源管理做些啥
所属栏目:[大数据] 日期:2022-07-04 热度:61
近年来,对降低碳排放水平和提高能源效率的兴趣导致智能建筑技术呈指数级增长。 最重要的是,物联网扩大了互连设备和建筑管理系统的可能性,以实现更好的能源管理。然而,真正实现其潜力需要组织和分析楼宇自动化系统生成的大型数据集。 实时管理和维护大数[详细]
-
为啥不能忽视建筑物中的数据解析
所属栏目:[大数据] 日期:2022-07-04 热度:65
想象一栋建筑,其中创新的管理系统不断提供有关内部情况的简单而有意义的信息。 这些数据可用于提高效率、开发更智能的设备维护协议、创建更健康的建筑环境,并最终让使用者更快乐。 现在,考虑一个没有用于监控其系统的分析的建筑物。设备出现故障,存在空[详细]
-
数据迁移 在平台之间移动数据的优秀践行
所属栏目:[大数据] 日期:2022-07-04 热度:104
随着越来越多的数据从内部系统转移到访问外部 API 的应用程序,迁移数据的需求变得越来越重要。 数据迁移在不同的上下文中可能意味着不同的东西,但在实践中,当我们谈论数据迁移时,我们通常是在谈论将数据从一个平台或系统移动到另一个平台或系统。 人们普[详细]
-
使用 FlatBuffers 提高反序列化功能
所属栏目:[大数据] 日期:2022-07-04 热度:83
最近一直在寻找一个性能和资源占用兼具的序列化和反序列化工具,大多组织都是采用的 JSON, JSON 可以做到数据的前后兼容,并且更容易让人理解和可视化,但 JSON 的性能相对更差,自身的元数据也会占用更多的存储空间。 根据官网介绍FlatBuffers是一个高效的[详细]
-
当大数据平台遇到K8s 智领云助力企业向数据驱动变型
所属栏目:[大数据] 日期:2022-07-04 热度:127
数据驱动是企业数字化转型的一个重要特点。随着企业对数据分析和使用的不断增长,数据来源多,数据工具复杂,参与数据工作的人多,数据开发的工作量越来越大,同时还要求周期短、质量高。对此,数据团队持续优化数据开发流程、应用,借鉴了DevOps、精益管理[详细]
-
区块链影响数据分析行业的五种方法
所属栏目:[大数据] 日期:2022-07-04 热度:169
新技术的出现比人们想象的还要快。像大数据和区块链这样的新兴技术正在成为传统。此类技术正在改变企业开展业务的方式。例如这两种技术是独立的,并且是独立使用的。然而,虽然数据科学处理的是从原始和非结构化数据中寻找见解,但区块链技术是一个共享的账[详细]
-
开发大数据应用程序企业的四个成功要点
所属栏目:[大数据] 日期:2022-07-04 热度:185
大数据技术正在以无数种方式改变我们的生活。由于数据提供的许多好处,越来越多的公司正在对其进行投资。到2026年,全球公司预计将花费超过2340亿美元。这对于为客户和企业等开发大数据应用程序的公司来说是一个绝佳的机会。 如果您有兴趣创建一个成功的大数[详细]
-
成功实行数据迁移的策略
所属栏目:[大数据] 日期:2022-06-30 热度:121
数据迁移是一个复杂且通常成本高昂的过程。企业将需要正确的方法来准确无误地迁移数据,其中包括深思熟虑的策略和适当的工具。 什么是数据迁移? 数据迁移是指将数据从一个存储系统传输到另一个存储系统的过程。它从数据选择和准备开始,在此期间进行提取和[详细]
-
大数据时代 是谁在监察着我们?
所属栏目:[大数据] 日期:2022-06-30 热度:183
你知道吗,有人比你更加了解你自己。 做人脸识别的公司知道我们每天晚上什么睡觉,周末早上赖床到几点。 周一早高峰时间挤在地铁里刷财经新闻的人,会在周五下班路上收到系统推送的八卦新闻。 你跟家人朋友随口一句吐槽,打开淘宝就能看到相关商品的推荐。[详细]
-
大数据在本质上不是一种科技而是一种思维方式
所属栏目:[大数据] 日期:2022-06-30 热度:166
我常说,互联网并不可怕,仅仅只是一个渠道罢了,并不会生产出什么特定的价值,他只是一个渠道的扩充,只是这个渠道是指数成长罢了。 大数据在本质上不是一种技术而是一种思维方式,也仅仅只是一个渠道罢了。 比如我们通过数据可以得知很多的事情,看上去是[详细]
-
数据团队来管理数据的年代应当结束了
所属栏目:[大数据] 日期:2022-06-30 热度:54
最初使用的是数据仓库,然后是数据湖。如果大肆宣传是可信的话,那么现在是数据网格的时代了。 所有这些都依次被视为开启金融数据真正价值的灵丹妙药。那么,为什么数据的真正价值之前没有实现呢? 中心化的数据团队常常会在公司结构中造成瓶颈,阻碍整个企业[详细]