-
2022年三个主要的数据分析趋向
所属栏目:[大数据] 日期:2022-05-19 热度:170
数据分析是一个不断发展的领域。2020年初发生新冠疫情成为主要的破坏因素,企业需要大力投资数据分析以支持其数字化转型。 在新冠疫情蔓延初期,很多企业减少开支并专注于其他紧迫的优先事项(例如支持员工远程工作),这似乎可能会阻碍数据和分析的进步。但是[详细]
-
大数据技术的用处和它的五大核心原理
所属栏目:[大数据] 日期:2022-05-19 热度:116
大数据的用途 大数据可分成大数据技术、大数据工程、大数据科学和大数据应用等领域。目前人们谈论最多的是大数据技术和大数据应用。工程和科学问题尚未被重视。大数据工程是指大数据的规划建设运营管理的系统工程;大数据科学关注大数据网络发展和运营过程中[详细]
-
基于数据解析给出运营建议 咋整?
所属栏目:[大数据] 日期:2022-05-19 热度:104
有同学问:如何基于数据分析提出运营建议,今天我们拿个简单的题目来举例。这个题目陈老师之前讲过,有印象的同学应该还记得。再举一次,是因为每到招聘季都有人把它搬出来,而且有关它的大部分讲解,都是错的。 已知,下图是某个电商一周销售金额走势(具体[详细]
-
生活中无处不在的数据解析
所属栏目:[大数据] 日期:2022-05-19 热度:92
关于数据分析的问题 很多时候,会被一些刚刚入门或者入门两三年的同学问:数据分析就是提数据吗?为什么我感觉我像个工具人一样天天写SQL做报表呢?! 每到这个时候,我就想起来了我入行的那个夏天,每天乐此不疲的跑着SQL。好像自己那会儿没有思考过这个问[详细]
-
真正指挥大规模战争的其实为大数据和人工智能?
所属栏目:[大数据] 日期:2022-05-19 热度:172
大数据和人工智能到底有多强?大部分人仍然没有直观体会,但实际上已经渗透进当今地球和人类活动的方方面面。也正在深刻地改变世界的固有形态。那些过去的超级强国,在这方面仍然遥遥领先,而那些没有跟上潮流的90%以上的国家,其实早就彻底躺平;最主要的是那[详细]
-
数据分析师七大实力 梳理标签体系
所属栏目:[大数据] 日期:2022-05-19 热度:121
大家好,我是爱学习的小xiong熊妹。 这次分享一个更高级能力:构造标签体系。在提升能力的顺序上,当然是先会打一个标签,再会搞整个体系了。 一、什么是标签体系? 围绕一个业务场景,实现业务闭环操作的若干个标签组合,称为标签体系。之所以需要标签体系,[详细]
-
大数据分析是啥?
所属栏目:[大数据] 日期:2022-05-19 热度:106
大数据分析:是指对规模巨大的数据进行分析,大数据可以概括为:数据量大,速度快,类型多,价值、真实性。 大数据可以概括为5个V, 数据量大、速度快、类型多、价值、真实性。 1.可视化分析 不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最[详细]
-
大数据研究引用挑战预测增加
所属栏目:[大数据] 日期:2022-05-19 热度:99
尽管大数据行业有大量的软件平台和产品、开发人员和数据专业人士,以及许多热心的爱好者,但对于专业数据工作者和管理人员来说,在企业中实施数据战略仍然存在一些担忧和障碍。 数据分析平台提供商Unsupervised公司日前发表了一项名为2022年大数据恐惧和预测[详细]
-
专家视点 数据无处不在的云原生途径
所属栏目:[大数据] 日期:2022-05-19 热度:173
使用 Kubernetes 进行架构是必不可少的核心部分,它使数据分析异常灵活,可在业务需要的任何地方运行,并以高并发、高性能、效率和可用性大规模运行。 从金融服务和保险到制造和医疗保健等垂直领域的无数企业发现,他们需要公共和私有云、混合和边缘部署来最[详细]
-
TiDB 在携程 实时标签处理平台优化践行
所属栏目:[大数据] 日期:2022-05-19 热度:86
携程是全球领先的一站式旅行平台,旗下拥有携程旅行网、去哪儿网、Skyscanner 等品牌。携程旅行网向超过 9000 万会员提供酒店预订、酒店点评及特价酒店查询、机票预订、飞机票查询、时刻表、票价查询、航班查询等服务。 在十亿级别数据量下,携程借助 TiDB H[详细]
-
为什么2022年仍然存在数据孤岛?
所属栏目:[大数据] 日期:2022-04-13 热度:51
企业摆脱数据孤岛并不容易。人们需要了解什么是数据孤岛、为何难以消除数据孤岛以及如何克服这些挑战。 好消息是,如今可供企业使用的数据比以往任何时候都多。从客户注册在线帐户到向企业提供他们的详细信息,信息对于帮助企业做出关键业务决策非常宝贵。[详细]
-
供应链分析 保持物流顺畅的五个技巧
所属栏目:[大数据] 日期:2022-04-13 热度:188
事实表明,越来越多的企业采用数据分析来应对供应链中断,并加强供应链管理(SCM)。 专业服务和咨询机构毕马威公司在最近发布的一份研究报告中指出,目前有几项重大中断正在影响供应链。其中包括由于新冠疫情而导致的全球物流持续中断,这些中断将继续影响企[详细]
-
2022年的5个主要的数据迁移趋势
所属栏目:[大数据] 日期:2022-04-13 热度:81
数据似乎总是需要迁移,无论是从内部部署设施迁移到云平台,还是从操作系统到长期存档,数据始终在移动。 以下是2022年数据迁移市场的五个主要趋势: 1.非结构化数据迁移 2022年,首席信息官将会继续关注基础设施的现代化,以支持由于下一代应用程序、云计算[详细]
-
创建数据驱动的价值生态系统的3个步骤
所属栏目:[大数据] 日期:2022-04-13 热度:99
事实证明,管理大量数据和颠覆性技术的关键在于建立一个能力中心。 尽管许多企业在其数据分析项目中使用人工智能和机器语言工具作为核心推动因素,并且全球人工智能支出持续增加,但事实上,大多数数据科学项目注定要失败。 导致这些失败的原因有很多,从人[详细]
-
需要避免的7个数据治理错误
所属栏目:[大数据] 日期:2022-04-13 热度:89
如今的每个数据交易都是一种商业交易,这是构建一个强大、安全、适应性强且尽可能无错误的数据治理框架至关重要的原因。 大多数首席信息官都知道,处理不当的数据可能会导致财务、声誉、法律和其他问题。这就是企业需要拥有强大的数据治理策略的原因,也就是[详细]
-
汽车公司和移动通信公司如何使用大数据提高驾驶安全性
所属栏目:[大数据] 日期:2022-04-13 热度:102
大数据技术如今在保障驾驶安全方面取得了重要进展,而有些人没有意识到大数据提供的惊人好处。大数据的最大好处之一是它可以帮助提高汽车驾驶的安全性。 在阻止发生交通事故方面,数据分析技术变得越来越有用。许多企业正在共享数据,为提高交通安全提供帮助[详细]
-
企业IT可以真正将大数据应用到哪些地方?
所属栏目:[大数据] 日期:2022-04-13 热度:81
在各行业领域中,很少有比大数据更容易提及同时又不太容易理解的术语。这可能会让人们很容易将大数据视为一个不经意提到的流行语,而不仅仅是对于企业的流程和业务密切相关的真实价值的一个概念,但这是一个错误。理解并正确利用大数据对于任何企业的成功都[详细]
-
业务分析师获取更多收入可以采取的7个措施
所属栏目:[大数据] 日期:2022-04-13 热度:69
无论是原地踏步还是展翅高飞,业务分析师都有很多方法提升其业务水平和收入。 业务分析师的工作通常是企业中最重要的工作之一:利用数据分析来弥合IT与业务之间的差距。在这一过程中,他们与业务领导者和用户互动,以更好地了解流程、产品、服务、软件和硬件[详细]
-
选择嵌入式分析供应商时需要考虑的8件事
所属栏目:[大数据] 日期:2022-04-13 热度:114
选择嵌入式分析供应商并非易事,市场上可用的解决方案太多了,因此需要了解如何做出最佳决策,并确保投资更有效的解决方案。 事实是并没有直接的答案。正确答案其实是几个正确答案的组合,当然还有企业的特定业务需求。因此,企业在选择嵌入式分析供应商时,[详细]
-
最大化数据分析价值的5种方法
所属栏目:[大数据] 日期:2022-04-13 热度:130
数字时代使大多数企业追求数据驱动战略的成果,但确保获得回报比大多数人想象的要微妙得多。 许多企业都在收集大量数据并对其进行分析,而通过分析这些数据获得最佳商业价值完全是另一回事。 在分析工具上投入巨资的企业可能没有找到方法来确保其努力带来的[详细]
-
运用大数据进行营销的9种最佳方法
所属栏目:[大数据] 日期:2022-04-12 热度:51
大数据驱动营销业务的发展如今比以往任何时候都更加重要,所以需要战略性地使用这些实践。 对于很多企业来说,大数据已经成为一项非常具有价值的技术资产,并利用大数据改善业务。数据分析和人工智能技术的一些最佳实践已经出现在营销领域。 数据驱动营销比[详细]
-
2022年数据可视化的主要趋向
所属栏目:[大数据] 日期:2022-04-12 热度:97
大数据改变不同行业的例子不胜枚举。它可以用于减少交通堵塞、个性化产品和服务、改善视频游戏体验等视觉效果。 毫无疑问,大量非结构化数据的收集和分析已经是一个巨大的突破。人们需要了解数据可视化及其在大数据应用中的作用。 如果没有将人们所寻找的东[详细]
-
组建高效分析团队的7个最佳实行
所属栏目:[大数据] 日期:2022-04-12 热度:55
数据驱动的成功取决于强大、多样化、跨职能的数据团队。IT领导者需要采用创建和维护团队的技巧,以提供敏锐的数据洞察力。 如果企业部署了最新和最好的数据分析工具,但未能组建高效的分析团队,那么会发生什么?将会失去创收机会,并浪费大量的时间和费用。[详细]
-
通过更好的数据质量改进决策的8个重要提醒
所属栏目:[大数据] 日期:2022-04-12 热度:118
企业对良好数据质量的需求日益增长,人们需要了解如何获得良好的数据质量以及它如何影响决策。 搜索引擎上有关数据质量这一术语多达600万项,这清楚地表达了数据质量的重要性及其在决策场景中的关键作用。了解数据有助于对其进行分类和鉴定,以便在所需场景[详细]
-
大数据和人工智能如何完全改变支付方式
所属栏目:[大数据] 日期:2022-04-12 热度:128
事实表明,数据技术的进步和发展使虚拟卡和电子钱包更适合支付管理。 数据如今已经成为企业必不可少的资产,而金融行业是从数据中受益的主业行业之一。通过解释和分析数据,企业可以了解和预测趋势、提高安全性,并做出数据驱动的决策。大数据和人工智能技术[详细]